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Abstract. In the present work we theoretically investigate density-wave propagation in a
superconducting medium, consisting of a finite number of layers. An electromagnetic
wave interacts with superconducting electrons to set up charge-density gradients within the
superconducting electron plasma. We use the London equations and a two fluid approach along with
a Kronig–Penney model to describe the layered medium, in order to investigate the density wave
behaviour by deriving a linear dispersion relation. It is shown that the charge density wave dissipates
gradually. We numerically investigate the dependence of the complex Bloch-wave number on
the propagation frequency using the standard boundary conditions of the Kronig–Penney model.
Expressions of reflectivity and transmissivity are derived for a periodic layered structure consisting
of a finite number of superconducting layers; these quantities are investigated numerically for a
high temperature superconductor and their dependence on background parameters is discussed.

1. Introduction

In the absence of a complete and satisfactory theory of superconductivity, phenomenological
theories provide useful insights into superconductivity as these theories are based on
fundamental physical principles e.g. the London theory is based on Maxwell’s equations.
Since these theories are useful in predicting the behaviour of superconductors (rather than
providing a complete description of its occurrence), they can be applied to devices which use
superconductors. The London model has been used earlier by Kogan (1981) and Fabrizio
(1991) to investigate the properties of charge density waves. Later Bunch and Grow (1997)
used the London equations along with a two fluid model (Gorter and Casimir model) to
investigate the propagation of charge density waves in superconductors. The two fluid model
takes losses into account, since one fluid is related to the superconducting electrons and other
to the semiconducting electrons. This approach is further justified since high Tc ceramics
exhibit metallic properties along the superconducting plane (a–b plane) and semiconductor
characteristics along the c plane. Bunch and Grow (1997) have noted that this approach may
have applications in the use of superconductors in travelling wave devices. The advantages of
such a device are that no electron focusing structure is needed and no cathode is necessary. This
makes possible the fabrication of millimetre and infrared devices since HTSs are compatible
with such fabrication (as opposed to conventional electron devices which are difficult to size
down at high frequencies) along with the fact these would be moderate power devices which
are high quality with low noise. The microwave and infrared properties are of importance
in superconductors because of the existence of the energy gap, which implies that photons
of energy less than the energy gap are not absorbed. For superconductors the frequencies
of interest are those which lie below the electron plasma frequency, that is the microwave
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and infrared frequency range. Bunch and Grow (1997) have investigated the interaction of a
guided slow electromagnetic wave with a d.c. superconducting electron current, which in turn
sets up charge density gradients within the superconducting electron plasma. The relevant
frequency range of interest for the propagation density waves is the microwave and infrared
frequency domain. We note here that charge density waves have been of interest in metals
(Peierls instability—see Kittel 1996) and a comprehensive review of these is given by Wilson
et al (1975) for the case of metallic layered structures.

With the advances of new technology and experimental techniques in solid state physics
and material science, the fabrication of more and more artificial materials with special structures
and properties is taking place. Such materials include metal–semiconductor or semiconductor–
insulator periodic layers etc. The theoretical work of Baynham and Boardman (1968, 1969)
is considered a watershed for the description of theoretical work in the area of semiconductor
periodic multilayer structures. Since then a lot of theoretical work has appeared investigating
both linear and nonlinear properties of wave propagation in periodic multilayer media (see
e.g. Kushwaha and Halevi 1987, Shah et al 1993, Ali and Shah 1997). For the case of a
periodic medium consisting of a finite number of layers, the transfer matrix method has been
used extensively to investigate the propagation of waves in such media. The transfer matrix
approach was developed by Abeles (1950) for work in the field of optics and later was further
developed in the works by Del Castillo-Mussot et al (1988).

In the present work we investigate the propagation of density waves in a periodic
superconducting medium (each layer is say a YBCO superconductor described by the London
and two fluid models). We neglect interlayer transfer (within the YBCO layers) of carriers
since carriers are confined mainly to the CuO2 layers (Tachiki et al 1994 and references therein
for experimental evidence) and this makes transport through the semiconducting layers weak.
Thus in our case the periodic medium is described using the Kronig–Penney model and each
layer is taken to have bulk superconducting properties. This allows us to take into account the
boundary conditions of each bulk layer and its respective thickness. Bunch and Grow (1997)
used thin film parameters in their work, but did not account for its finite dimensions. Our model
overcomes this shortcoming. Additionally from the point of view of applications to devices,
which use different conducting and superconducting layers, our approach is potentially more
useful. We note here that Tachiki et al (1994) have used a similar approach to investigate
electromagnetic phenomena related to a low frequency plasma in cuprate superconductors, but
their case is limited to investigating the case of a single layer (thin film) only, taking its finite
dimensions into account.

The layout of the paper is as follows. In the next section we give a mathematical
formulation of the problem and derive the linear dispersion relation in an infinite periodic
superconducting medium consisting of two alternating layers of superconductors. In section 3,
we derive expressions for the reflectivity and transmissivity for a medium consisting of finite
number of superconducting layers. The transfer matrix method is used to obtain the above
mentioned expressions. In section 4, we present a numerical analysis of the results of the
previous sections and in section 5 we give a conclusion of our investigations.

2. Linear dispersion relation

In the present section we give the mathematical formulation of the problem and derive the
linear dispersion relation for density waves propagating in a layered superconducting medium.
Figure 1 gives a schematic representation of the layered medium, which consists of two
alternating layers having thicknesses d1 and d2 respectively. The layers have number densities
n1 and n2, both of which have a superconducting component ns and a normal state component
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Figure 1. Schematic diagram of the periodic superconducting medium. d1 and d2 and ε1 and ε2
are the thicknesses and dielectric constants of the alternating layers respectively. εi and εl are the
dielectric constants of the first and the last medium.

nn. Each layer is described by a set of equations which consist of Maxwell’s equations, the
London equations (London and London 1935, Bunch and Grow 1997 etc) and an equation of
motion for the superconducting electrons. These equations are as follows

∇ × E = −µα

∂H

∂t
(1)

∇ ×H = Jα + εα
∂E

∂t
(2)

∇ · E = e
nα

εα
(3)

∇ ·H = 0 (4)

∇ ×
(

mα

e2nsα
Jsα

)
= −µαH (5)

Jα = jsα + jnα (6)

where jsα = ensαvsα and jnα = bασαE are the superconducting and the normal electron
current densities respectively.

mα

dvsα
dt

= eE (7)

nsα = (1 − bα)nα. (8)

Equations (1)–(4) are the Maxwell equations; here εα = εrαε0, where εrα is the relative
dielectric constant and ε0 is the permittivity of free space. Equation (5) is the relevant London
equation. Equation (6) is the expression for the current density and equation (7) is the equation
of motion of the superconducting electrons. Equation (8) gives the relation between the
superconducting electrons nsα and nα (the total electron number density); the parameter bα
is a fraction which gives the number of normal state electrons and vsα is the superconducting
electron velocity. Equations (7) and (8) come from the Gorter and Casimir model—for a
discussion see Portis (1990). The subscript α (α = 1, 2) in the above set of equations denotes
the layers of the multilayered periodic medium. A slow electromagnetic wave (Bunch and
Grow 1997) propagates close to the surface of the layered superconducting medium, which
interacts with the superconducting electrons in each layer; this in turn sets up the density wave
in each layer of the medium.

We first of all give a brief derivation of the density wave in each layer of the superconducting
medium. We note in advance that this result is essentially the same as the linear dispersion
relation derived by Bunch and Grow (1997). We assume that all the fluctuating quantities are
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small in comparison with the background values or the d.c. values, so that all a(z, t) are of the
form

a(z, t) = a0 + a1e−ikz+iωt (9)

where a0 are the background or d.c. values and a1 are the fluctuating or a.c. values. By
eliminating all the variables in favour of one of the variables we arrive at the following
differential equation, for density waves in each layer propagating in the z direction only:

(1 − bα)(1 + iδα)
∂2

∂z2
jα1 + 2iβα

(
1 +

γα

2
− bα

2
(1 + γα + iδα)

)
∂

∂z
jα1

−β2
α(1 − γα − iδα)jα1 = 0. (10)

Here βα = ω/vs0α is the propagation constant of the superconducting electrons in layer α and
vs0α is the d.c. superconducting electron velocity set up by an external source, and

δα = σαbα

ωεα
(11)

where σα is the conductivity of the normal state electrons of the αth layer and

γα = ω2
spα

ω2
(12)

is the ratio of the superconducting electron plasma frequency ωspα = (e2ns0α/mεα)
1/2 and the

frequency of the density wave in the αth layer.
Using (9) we obtain the linear dispersion relation

k2
α(1 − bα)(1 + iδα)− 2kαβα

(
1 +

γα

2
− bα

2
(1 + γα + iδα)

)
+ β2

α(1 − γα − iδα) = 0. (13)

We further note that the linear dispersion relation (13) is a complex quadratic equation,
implying that within each layer there will be two modes of propagation which will either grow
or be damped. A numerical analysis of equation (13) is given in section 4, where the results
of analysis are presented graphically.

Since we wish to investigate the propagation of the density waves in a periodic
superconducting medium, we follow the standard procedure developed by Baynham and
Boardman (1968, 1969) (see also Bass et al 1989). The two periodically alternating layers
have thicknesses d1 and d2 respectively and d = d1 + d2 is the period of the medium. The
solution within each layer is given by

A1(z) = X1eik1z + X2e−ik1z

A2(z) = Y1eik2z + Y2e−ik2z.
(14)

We introduce the boundary conditions which are used in the standard treatment of layered
media, having a Kronig–Penney type of structure. We assume that the fields (and their
derivatives) of the two layers are connected to one another at the boundary of the two layers
in the following way:

X1eik1d1 + X2e−ik1d1 = Y1eik2d1 + Y2e−ik2d1

k1(X1eik1d1 −X2e−ik1d1) = k2(Y1eik2d1 − Y2e−ik2d1)

X1 + X2 = eiq̄d (Y1eik2d + Y2e−ik2d)

k1(X1 −X2) = k2eiq̄d (Y1eik2d − Y2e−ik2d)

(15)

where q̄ is the analogue of the Bloch wave vector. Solving the set of equations (15) we obtain
the linear dispersion relation for density waves in a periodic superconducting medium.

cos q̄d = cos k1d1 cos k2d2 − 1

2

(
k1

k2
+
k2

k1

)
sin k1d1 sin k2d2 (16)
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where k1 and k2 are given by equation (13).
As noted earlier that the linear dispersion relation within each layer (equation (13)) has

complex coefficients, this implies that k is complex and can be expressed as

kα = kr,α + iki,α. (17)

This in turn implies that Bloch wave vector q̄ is also complex and therefore is written as

q̄ = q̄r + iq̄i . (18)

Substituting (17) and (18) into (16) we obtain, after separating into real and imaginary parts,
expressions for the real and imaginary parts of the Bloch wave number; these are given by the
following two expressions respectively:

q̄r = 1

d
sin−1

(
g

±
√

−l ± (l2 + 4g2)1/2/2

)
(19)

q̄i = 1

d
sinh−1

(
±
√

−l ± (l2 + 4g2)1/2

2

)
(20)

where

l = 1 − g2 − f 2 (21)

f = cos kr1d1 cosh ki1d1 cos kr2d2 cosh ki2d2 − sin kr1d1 sinh ki1d1 sin kr2d2 sinh ki2d2

−1

2

[
kr1

kr2
+
kr2

kr1

]
[sin kr1d1 cosh ki1d1 sin kr2d2 cosh ki2d2

− cos kr1d1 sinh ki1d1 cos kr2d2 sinh ki2d2] − 1

2

[(
kr1ki2

k2
r2

− ki1

kr2

)

+

(
kr2ki1

k2
r1

− ki2

kr1

)]
[sin kr1d1 cosh ki1d1 cos kr2d2 sinh ki2d2

+ cos kr1d1 sinh ki1d1 sin kr2d2 cosh ki2d2] (22)

and

g = cos kr1d1 cosh ki1d1 sin kr2d2 sinh ki2d2 + sin kr1d1 sinh ki1d1 cos kr2d2 cosh ki2d2

+
1

2

[
kr1

kr2
+
kr2

kr1

]
[sin kr1d1 cosh ki1d1 cos kr2d2 sinh ki2d2

+ cos kr1d1 sinh ki1d1 sin kr2d2 cosh ki2d2] − 1

2

[(
kr1ki2

k2
r2

− ki1

kr2

)

+

(
kr2ki1

k2
r1

− ki2

kr1

)]
[sin kr1d1 cosh ki1d1 sin kr2d2 cosh ki2d2

− cos kr1d1 sinh ki1d1 cos kr2d2 sinh ki2d2] (23)

We note here that in the above equations we have taken kr,α � ki,α , because we begin by
considering equation (13), which is the linear dispersion relation of the density waves within
each layer. Since this is a quadratic equation it will have two roots for kα for the upper and
lower signs respectively. For the parameter values for a typical HTS, YBa2Cu3O7 (YBCO),
as given by Bunch and Grow (1997) we take conductivity σα between 104 and 107 *−1 m−1,
superconducting electron velocity vs0α of the order of 105 m s−1 and superconducting electron
number density ns0α ∼ 10−27 m−3, see also figure captions. We note that γ � 1 and
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γ > δ � 1 for microwave and infrared frequencies. Using this we see that for the root with
lower sign we have approximately the following:

kαr = − βα

1 − bα
(24)

kαi = − βα

(1 − bα)δα
(25)

which shows that kr � ki . For the root with upper sign it can be shown that kr ∼ ki , thus this
root is heavily damped and therefore is not of further interest.

3. Reflectivity and transmissivity through a finite layer periodic superconductor

So far we have not imposed any restriction on the number of layers in the superconducting
medium and the linear dispersion relation (equation (16)) is valid for a medium consisting of
an infinite number of layers. In order to incorporate finite number of layers it is convenient to
use the transfer matrix approach, the details of which are available in many texts (e.g. Abeles
1950, Born and Wolf 1989, Del Castillo-Mussot et al 1988 etc). The essence of the transfer
matrix method is to connect the field at, say z = 0, to the point z = Nd by multiplying N

matrices, where N is the number of layers. Without going into details of the derivation which
are present in the references mentioned above we write the transfer matrix for N layers

mN =
[
M11 M12

M21 M22

]
(26)

where

M11 = m11
sinNϕ

sin ϕ
− sin(N − 1)ϕ

sin ϕ

M12 = m12
sinNϕ

sin ϕ

M21 = m21
sinNϕ

sin ϕ

M22 = m22
sinNϕ

sin ϕ
− sin(N − 1)ϕ

sin ϕ

(27)

where ϕ is the linear dispersion relation and is given by

ϕ = cos q̄d

and m11, m12, m21 and m22 are the matrix elements of a 2 × 2 matrix m of transformation for a
structure of period 1. We note that both the matrices m and mN are unimodular and are related
to one another via the relationship

mN = (m)N .

In obtaining expressions (26) and (27) we have followed the treatment of Bass et al (1989),
where Sylvester’s formula (Gantmacher 1967) is used which allows us to express a matrix in
the form of an interpolational polynomial. For the sake of completeness the elements of the
matrix m are given below:

m11 = cos k1d1 cos k2d2 − k2

k1
sin k1d1 sin k2d2

m12 = −k−1
2 cos k1d1 sin k2d2 − k−1

1 sin k1d1 cos k2d2

m21 = k1 sin k1d1 cos k2d2 + k2 cos k1d1 sin k2d2

m22 = cos k1d1 cos k2d2 − k1

k2
sin k1d1 sin k2d2.

(28)
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It should be noted that

cos q̄d = 1
2 (m11 + m22).

We note here that the linear dispersion relation (equation (16)) can be derived via this method
also and it remains independent of the number of layers.

We can now obtain expressions for the coefficients of reflection and transmission for
density wave incident normally upon N number of layers, where the layers are bounded on
each side by media having dielectric constants given by εi and εl (correspondingly having
wave vectors ki and kl) respectively. In general the reflection and transmission coefficients are
given by r and t respectively (Born and Wolf 1989)

r = R

I0
= (M11 + iM12kl)ik0 − (M21 + iM22kl)

(M11 + iM12kl)ik0 + (M21 + iM22kl)
(29)

t = T

I0
= 2ik0

(M11 + iM12kl)ik0 + (M21 + iM22kl)
(30)

where I0, R and T denote the amplitudes of the incident, reflected and transmitted waves and
k0 and kl are the wave numbers of the initial and final media having dielectric constants εi and
εl respectively. Using expressions (27) and (28) the coefficients of reflection and transmission
are given by

r =
[

sinNϕ

sin ϕ

{
i cos k1d1 cos k2d2(k0 − kl)− i sin k1d1 sin k2d2

(
k0k2

k1
− klk1

k2

)

+ cos k1d1 sin k2d2

(
klk0

k2
− k2

)
+ sin k1d1 cos k2d2

(
klk0

k1
− k1

)}

−i
sin(N − 1)ϕ

sin ϕ
(k0 − kl)

][
sinNϕ

sin ϕ

{
i cos k1d1 cos k2d2(k0 + kl)

−i sin k1d1 sin k2d2

(
k0k2

k1
+
klk1

k2

)
+ cos k1d1 sin k2d2

(
klk0

k2
+ k2

)

+ sin k1d1 cos k2d2

(
klk0

k1
+ k1

)}
− i

sin(N − 1)ϕ

sin ϕ
(k0 + kl)

]−1

(31)

t = 2ik0

[
sinNϕ

sin ϕ

{
i cos k1d1 cos k2d2(k0 − kl)− i sin k1d1 sin k2d2

(
k0k2

k1
− klk1

k2

)

+ cos k1d1 sin k2d2

(
klk0

k2
− k2

)
+ sin k1d1 cos k2d2

(
klk0

k1
+ k1

)}

−i
sin(N − 1)ϕ

sin ϕ
(k0 − kl)

]−1

. (32)

In terms of r and t , the reflectivity and transmissivity are

Rref = |r|2 (33)

Ttrn = kl

k0
|t |2. (34)

The complete expressions for Rref and Ttrn are easily derived from equations (31) and (32)
and the results of their numerical investigations are given in the following section. For the case
of a single layer the above expressions reduce to the standard ones (e.g. Born and Wolf 1989).
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4. Numerical analysis

In this section we present a numerical analysis of the results obtained in the previous two
sections. We have followed Bunch and Grow (1997) in taking the conductivity to be frequency
independent; they have used the following relationship between conductivity and surface
resistance Rs (Laderman et al 1991)

σ = 2Rs

ω2µ2
0λ

3
.

The fact that Rs is directly proportional to ω2 is used and has been verified experimentally (see
e.g. Laderman et al 1991, Lyons and Withers 1990), where λ is the London penetration depth
and we note here that for thin film YBCO, it has a value of 1.6 × 10−7 m (Bunch and Grow
1997) which is much smaller than the layer thicknesses (see figure captions). An alternative
approach could have been made to use a frequency dependent conductivity at high frequencies
given by Tinkham (1975). However we feel that for the purposes of the present analysis it is
sufficient to use a constant conductivity for the reasons given above.

As discussed in section 2, the root of equation (13) with lower sign is investigated
numerically and its results are presented graphically in figures 2(a) and (b). The numerical
values used are given in the figure captions. The real and imaginary parts of k1 are presented
in figures 2(a) and (b) respectively. We first of all note that this solution of k1 corresponds
to a backward propagating density wave, and has similar values and characteristics in each
of the two layers, thus for the sake of brevity figures 2(a) and (b) show results for α = 1
only. We further note that we have taken graphs for different values of the conductivity. The
real part of the wave number k1r does not change with a change in conductivity; however
the imaginary part k1i shows significant changes for different conductivities (see figure 2(b)).
We see that as conductivity decreases, the damping of the density waves occurs as the wave
travels towards higher frequency regions. We also note that if the component of the normal
state electrons increases, the damping also increases (not presented in the graphs). The real
part of the wave number kαr is sensitive to the magnitude of the superconducting velocity
vs0α . As vs0α increases the wave number kαr becomes smaller i.e. the waves become longer
wavelength waves (see equation (24)). The effective mass values of electrons are assumed to
be m1 = 15m0 and m2 = 10m0 respectively and the values of the relative dielectric constant
are considered as εr1 = 3 and εr2 = 4 (Aarnink 1992). All other parameter values used in
the numerical analysis are those given in the figure captions and those for a typical YBCO
superconducting thin film (Bunch and Grow 1997).

We further investigate the behaviour of the Bloch wave number q̄ which describes the
propagation characteristics of the density waves in a periodic structure. Both the real (q̄r ) and
imaginary (q̄i) parts of the Bloch wave number are investigated using equations (19) and (20).
We have chosen different values for the layer thicknesses, the component of the normal state
electron densities etc (see figure captions). We note that for most cases a band gap exists
for frequencies near ω = 109 s−1 and then there is a continuous propagation band, as the
frequency increases to 1012 s−1. We note here that for the Bloch wave number a positive
imaginary q̄i corresponds to damping (due to the manner in which the sign has been chosen
in the exponential of equation (15)). Figures 3(a) and (b) show the real and imaginary parts
of q̄. As seen for the case of kα the real part shows no variation for different conductivity
values, but the imaginary part shows shifts to the right as conductivity values decrease (not
shown in the figures); figure 3(b) shows the value of q̄i for conductivities σ1 = σ2 = 107 for a
layered medium. In figures 3(c) and (d) we have obtained graphs for a higher value of normal
state electron number density in layer 2 (by increasing the value of b: see equation (8)). We
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k1r(m
-1)

ω(sec-1)

(a)

ω(sec-1)

k1i(m
-1)

σ1=σ2=107

σ1=σ2=105

σ1=σ2=104

(b)

Figure 2. (a) k1r versus frequency ω; (b) k1i versus frequency ω, with varying conductivities
σ1 = σ2 = 107 *−1 m−1; σ1 = σ2 = 105 *−1 m−1 and σ1 = σ2 = 104 *−1 m−1. Other
parameters are ns01 = 1.4 × 1027 m−3, ns02 = 1.2 × 1027 m−3, εr1 = 3, εr2 = 4, d1 = 10−5 m,
d2 = 10−6 m, vs01 = vs02 = 105 m s−1, m1 = 15m0, m2 = 10m0 and b1 = 0.25, b2 = 0.35.

see that not only the behaviour of q̄i changes but also its magnitude shows a marked increase,
which implies that the density wave is heavily damped, although the corresponding kαi remains
relatively lightly damped (not shown graphically). We see from the graphical analysis that
the propagation characteristics of the density wave in the layered superconducting medium
are significantly more sensitive to the numerical values of the parameters, and if travelling
wave devices are to be fabricated using thin film layers then this sensitivity must be taken into
account.
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ω(sec-1)

qr(m
-1)

(a)

qi(m
-1)

ω(sec-1)

(b)

Figure 3. (a) Real Bloch wave vector q̄r versus frequency ω, with b1 = 0.25, b2 = 0.35.
(b) Imaginary Bloch wave vector q̄i versus frequency ω, with b1 = 0.25, b2 = 0.35. (c) Real
Bloch wave vector q̄r versus frequency ω, with b1 = 0.25, b2 = 0.75. (d) Imaginary Bloch wave
vector q̄i versus frequencyω, with b1 = 0.25; b2 = 0.75. σ1 = 107 *−1 m−1, σ2 = 106 *−1 m−1,
ns01 = 1.4 × 1027 m−3, ns02 = 1.2 × 1027 m−3, εr1 = 3, εr2 = 4, d1 = 10−5 m, d2 = 10−6 m,
vs01 = vs02 = 105 m s−1 and m1 = 15m0, m2 = 10m0.

Figures 4(a) and (b) show the dependence of the reflectivity and transmissivity on the
propagation frequency of the density wave. We have assumed that the medium through which
the density wave is incident on the layered structure has the same properties as the final
medium i.e. εi = εl = ε0. The equations themselves impose no such restriction and different
types of εi and εl can be used in principle. Figures 4(a) and (b) show that reflectivity is
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-1)

ω(sec-1)

(c)

ω(sec-1)

qi(m
-1)

(d)

Figure 3. (Continued)

small at lower frequencies and at higher frequencies it goes up to almost its maximum value
of 1. Transmissivity shows the opposite trend, in that that it is large at low frequencies and
decreases at higher frequencies. This shows that the medium has positive absorptanceA (where
A = 1 − (Rref + Ttrn) for low frequencies, which implies that wave gives up some energy to
medium. Figures 4(c) and (d) show plots for reflectivity and transmissivity for relatively thick
structure of alternating layers. We see that reflectivity and transmissivity of the wave strongly
depend on the frequency and thicknesses of layers because when we take relatively thick
layers, the reflectivity increases and transmissivity diminishes. For the purposes of the above
numerical analysis we have taken the number of layers N = 10. We also see from figure 4
that both reflectivity and transmissivity are modified by the periodicity of the medium—i.e.
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Figure 4. (a) Reflectivity Rref versus frequency ω, with d1 = 10−5 m, d2 = 10−6 m.
(b) Transmissivity Ttrn versus frequency ω, with d1 = 10−5 m, d2 = 10−6 m. (c) ReflectivityRref

versus frequency ω, with d1 = 10−3 m, d2 = 10−4 m. (d) Transmissivity Ttrn versus frequency ω,
with d1 = 10−3 m, d2 = 10−4 m. b1 = 0.25, b2 = 0.35, σ1 = 107 *−1 m−1, σ2 = 106 *−1 m−1,
ns01 = 1.4 × 1027 m−3, ns02 = 1.2 × 1027 m−3, εr1 = 3, εr2 = 4, vs01 = vs02 = 105 m s−1,
m1 = 15m0, m2 = 10m0 and N = 10.

for the case of thicker layers the periodic variations of both reflectivity and transmissivity are
larger.

5. Conclusion

In the present work we have considered a periodic layered structure consisting of two alternating
superconducting layers. For this medium we have investigated the propagation characteristics
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Figure 4. (Continued)

of density waves which arise as a consequence of the interaction of a slow electromagnetic wave
(external) with the superconductor. We have derived linear dispersion relation for the density
waves for the layers individually and the layered structure as a whole. The layered medium is
described by using the Kronig–Penney model. We see that the linear dispersion relations are
complex and the density waves are damped. A numerical investigation of these linear dispersion
relations has been carried out and its results presented in the previous section. We see that the
real and imaginary parts of kα and q̄ are sensitive to the values of the superconducting velocity
vs0α and the parameter bα respectively. The Bloch wave number q̄ is modified by the period
of the superconducting medium, figures 3(a) and (b). We also note that q̄ shows a propagation
gap around ω = 109 s−1.
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We have further considered the case of the layered medium when it consists of a finite
number of superconducting layers. By making use of the transfer matrix approach we have
derived expressions for the reflectivity and transmissivity of the density wave as it propagates
through the periodic medium. In the section on numerical analysis we have presented graphical
results of these quantities for different background parameter values, which are given in the
figure captions. We see that both reflectivity and transmissivity are sensitive to the thickness
of the layers. The results also show that the medium has a positive absorptance, implying
that the density wave loses some of its energy to the periodic medium. We would like to note
here that we have related our work to high temperature superconductors although the analysis
here remains valid for ordinary superconductors as well. The reasons for this is that from
the point of view of exploiting superconductors in travelling wave devices for the purposes of
amplification, HTSs are more appropriate from the fabrication point of view.

In view of the recent idea of fabricating travelling wave devices consisting of
superconductors (see references in section 1) we feel that the work presented here is of current
relevance. From the point of view of device fabrication involving superconductors, such
as amplifiers etc, the work presented here can have potential applications. Furthermore the
analysis presented here can easily be extended to the case where the periodic medium consists
of alternating superconducting and insulating layers.

Acknowledgment

This work was conducted under the Pakistan Science Foundation research grant No PSF/Res/P-
PU/Phys(99). We would like to thank the referees for their comments.

References

Aarnink W A M 1992 PhD Thesis University of Twente
Abeles F 1950 Ann. Phys., Paris 5 596
Ali R and Shah H A 1997 J. Phys.: Condens. Matter 9 7583
Bass F G, Bulgakov A A and Tetervov A P 1989 High Frequency Properties of Semiconductor Superlattices (Moscow:

Nauka) (in Russian)
Baynham A C and Boardman A D 1968 J. Phys. A: Math. Gen. 1 363
——1969 J. Phys. C: Solid State Phys. 2 619
Born M and Wolf E 1989 Principles of Optics 6th edn (Oxford: Pergamon)
Bunch K J and Grow R W 1997 Int. J. Infrared Millimeter Waves 18 57
Del Castillo-Mussot M, Mochan W L and Barrera R G 1988 Electrodynamics of Interfaces and Composite Systems

ed R G Barrera and W L Mochan (Singapore: World Scientific)
Fabrizio M 1991 Macroscopic Theories of Superfluids ed G Grioli (Cambridge: Cambridge University Press)
Gantmacher F R 1967 Theory of Matrices (Moscow: Nauka)
Kittel C 1996 Introduction to Solid State Physics 7th edn (New York: Wiley)
Kogan V G 1981 Phys. Rev. B 24 1572
Kushwaha M S and Halevi P 1987 Phys. Rev. B 35 3879
Laderman S S, Taber R C, Jacowitz R D, Moll J L, Hylton T I, Marshall A F, Geballe T H and Beasley M R 1991

Phys. Rev. B 43 2922
London F and London H 1935 Proc. R. Soc. 149 71
Lyons W G and Withers R S 1990 Microwave J. Nov. 85
Portis A M 1990 Earlier and Recent Aspects of Superconductivity ed J G Bednorz and K A Muller (Berlin: Springer)
Shah H A, Durrani I U R and Abdullah T 1993 Phys. Rev. B 47 1980
Tachiki M, Koyama T and Takahashi S 1994 Phys. Rev. B 50 7065
Tinkham M 1975 Introduction To Superconductivity (New York: McGraw-Hill)
Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117


